Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.211
Filtrar
1.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664378

RESUMEN

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Asunto(s)
Colon , Fibras de la Dieta , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superficie Celular , Animales , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ratones , Colon/metabolismo , Colon/microbiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Femenino , Ratones Endogámicos C57BL , Moco/metabolismo , Trasplante de Microbiota Fecal , Simbiosis , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
2.
Eur J Med Res ; 29(1): 233, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622672

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS: Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1ß were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1ß, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS: Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1ß levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1ß release in human THP-1 cells in vitro. CONCLUSIONS: Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.


Asunto(s)
Fibrilación Atrial , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Acetatos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Inflamación/metabolismo , Leucocitos/metabolismo , Lipopolisacáridos/farmacología , Nigericina/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
J Transl Med ; 22(1): 369, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637862

RESUMEN

BACKGROUND: Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS: Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS: The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS: Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Factor de Transcripción STAT3 , Humanos , Ratones , Animales , Colitis Ulcerosa/terapia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ácidos Grasos Volátiles/efectos adversos , Ácidos Grasos Volátiles/metabolismo , Bacterias/metabolismo , Modelos Animales de Enfermedad , Inflamación , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Colon , Proteína Forkhead Box O3/metabolismo
4.
Nat Commun ; 15(1): 3003, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589368

RESUMEN

Inflammatory depression is a treatment-resistant subtype of depression. A causal role of the gut microbiota as a source of low-grade inflammation remains unclear. Here, as part of an observational trial, we first analyze the gut microbiota composition in the stool, inflammatory factors and short-chain fatty acids (SCFAs) in plasma, and inflammatory and permeability markers in the intestinal mucosa of patients with inflammatory depression (ChiCTR1900025175). Gut microbiota of patients with inflammatory depression exhibits higher Bacteroides and lower Clostridium, with an increase in SCFA-producing species with abnormal butanoate metabolism. We then perform fecal microbiota transplantation (FMT) and probiotic supplementation in animal experiments to determine the causal role of the gut microbiota in inflammatory depression. After FMT, the gut microbiota of the inflammatory depression group shows increased peripheral and central inflammatory factors and intestinal mucosal permeability in recipient mice with depressive and anxiety-like behaviors. Clostridium butyricum administration normalizes the gut microbiota, decreases inflammatory factors, and displays antidepressant-like effects in a mouse model of inflammatory depression. These findings suggest that inflammatory processes derived from the gut microbiota can be involved in neuroinflammation of inflammatory depression.


Asunto(s)
Microbioma Gastrointestinal , Animales , Humanos , Ratones , Depresión/terapia , Ácidos Grasos Volátiles/metabolismo , Trasplante de Microbiota Fecal , Heces
5.
BMC Genomics ; 25(1): 394, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649832

RESUMEN

BACKGROUND: Untargeted metabolomics and proteomics were employed to investigate the intracellular response of yak rumen epithelial cells (YRECs) to conditions mimicking subacute rumen acidosis (SARA) etiology, including exposure to short-chain fatty acids (SCFA), low pH5.5 (Acid), and lipopolysaccharide (LPS) exposure for 24 h. RESULTS: These treatments significantly altered the cellular morphology of YRECs. Metabolomic analysis identified significant perturbations with SCFA, Acid and LPS treatment affecting 259, 245 and 196 metabolites (VIP > 1, P < 0.05, and fold change (FC) ≥ 1.5 or FC ≤ 0.667). Proteomic analysis revealed that treatment with SCFA, Acid, and LPS resulted in differential expression of 1251, 1396, and 242 proteins, respectively (FC ≥ 1.2 or ≤ 0.83, P < 0.05, FDR < 1%). Treatment with SCFA induced elevated levels of metabolites involved in purine metabolism, glutathione metabolism, and arginine biosynthesis, and dysregulated proteins associated with actin cytoskeleton organization and ribosome pathways. Furthermore, SCFA reduced the number, morphology, and functionality of mitochondria, leading to oxidative damage and inhibition of cell survival. Gene expression analysis revealed a decrease the genes expression of the cytoskeleton and cell cycle, while the genes expression associated with inflammation and autophagy increased (P < 0.05). Acid exposure altered metabolites related to purine metabolism, and affected proteins associated with complement and coagulation cascades and RNA degradation. Acid also leads to mitochondrial dysfunction, alterations in mitochondrial integrity, and reduced ATP generation. It also causes actin filaments to change from filamentous to punctate, affecting cellular cytoskeletal function, and increases inflammation-related molecules, indicating the promotion of inflammatory responses and cellular damage (P < 0.05). LPS treatment induced differential expression of proteins involved in the TNF signaling pathway and cytokine-cytokine receptor interaction, accompanied by alterations in metabolites associated with arachidonic acid metabolism and MAPK signaling (P < 0.05). The inflammatory response and activation of signaling pathways induced by LPS treatment were also confirmed through protein interaction network analysis. The integrated analysis reveals co-enrichment of proteins and metabolites in cellular signaling and metabolic pathways. CONCLUSIONS: In summary, this study contributes to a comprehensive understanding of the detrimental effects of SARA-associated factors on YRECs, elucidating their molecular mechanisms and providing potential therapeutic targets for mitigating SARA.


Asunto(s)
Acidosis , Proliferación Celular , Células Epiteliales , Metabolómica , Proteómica , Rumen , Animales , Rumen/metabolismo , Rumen/efectos de los fármacos , Acidosis/veterinaria , Acidosis/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Bovinos , Proliferación Celular/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Lipopolisacáridos , Enfermedades de los Bovinos/metabolismo , Proteoma/metabolismo
6.
Front Immunol ; 15: 1328263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650948

RESUMEN

Background: Despite therapy advances, one of the leading causes of cancer deaths still remains lung cancer. To improve current treatments or prevent non-small cell lung cancer (NSCLC), the role of the nutrition in cancer onset and progression needs to be understood in more detail. While in colorectal cancer, the influence of local microbiota derived SCFAs have been well investigated, the influence of SCFA on lung cancer cells via peripheral blood immune system should be investigated more deeply. In this respect, nutrients absorbed via the gut might affect the tumor microenvironment (TME) and thus play an important role in tumor cell growth. Objective: This study focuses on the impact of the short-chain fatty acid (SCFA) Sodium Butyrate (SB), on lung cancer cell survival. We previously described a pro-tumoral role of glucose on A549 lung adenocarcinoma cell line. In this study, we wanted to know if SB would counteract the effect of glucose and thus cultured A549 and H520 in vitro with and without SB in the presence or absence of glucose and investigated how the treatment with SB affects the survival of lung cancer cells and its influence on immune cells fighting against lung cancer. Methods: In this study, we performed cell culture experiments with A549, H520 and NSCLC-patient-derived epithelial cells under different SB levels. To investigate the influence on the immune system, we performed in vitro culture of peripheral mononuclear blood cells (PBMC) from control, smoker and lung cancer patients with increasing SB concentrations. Results: To investigate the effect of SB on lung tumor cells, we first analyzed the effect of 6 different concentrations of SB on A549 cells at 48 and 72 hours cell culture. Here we found that, SB treatment reduced lung cancer cell survival in a concentration dependent manner. We next focused our deeper analysis on the two concentrations, which caused the maximal reduction in cell survival. Here, we observed that SB led to cell cycle arrest and induced early apoptosis in A549 lung cancer cells. The expression of cell cycle regulatory proteins and A549 lung cancer stem cell markers (CD90) was induced. Additionally, this study explored the role of interferon-gamma (IFN-γ) and its receptor (IFN-γ-R1) in combination with SB treatment, revealing that, although IFN-γ-R1 expression was increased, IFN-γ did not affect the efficacy of SB in reducing tumor cell viability. Furthermore, we examined the effects of SB on immune cells, specifically CD8+ T cells and natural killer (NK) cells from healthy individuals, smokers, and NSCLC patients. SB treatment resulted in a decreased production of IFN-γ and granzyme B in CD8+ T cells and NK cells. Moreover, SB induced IFN-γ-R1 in NK cells and CD4+ T cells in the absence of glucose both in PBMCs from controls and NSCLC subjects. Conclusion: Overall, this study highlights the potential of SB in inhibiting lung cancer cell growth, triggering apoptosis, inducing cell cycle arrest, and modulating immune responses by activating peripheral blood CD4+ T cells while selectively inducing IFN-γ-R1 in NK cells in peripheral blood and inhibiting peripheral blood CD8+ T cells and NK cells. Thus, understanding the mechanisms of action of SB in the TME and its influence on the immune system provide valuable insights of potentially considering SB as a candidate for adjunctive therapies in NSCLC.


Asunto(s)
Linfocitos T CD4-Positivos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo , Masculino , Femenino , Células A549 , Persona de Mediana Edad , Anciano , Microambiente Tumoral/inmunología , Ácido Butírico/farmacología , Línea Celular Tumoral , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Interferón gamma/metabolismo
7.
Trop Anim Health Prod ; 56(3): 122, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607593

RESUMEN

The present study aimed to use poor quality roughages, such as rice and faba bean straw, treated with or without urea, and their impacts on digestibility, rumen fermentation, some blood parameters, and growth performance of lambs. Twenty crossbred male lambs (1/4 Finland ×¾ Ossimi, 25±1.13kg live body weight) were chosen and divided into four groups. All lambs were fed rations of concentrated feed mixture at 2% of live weight with the following roughages ad libitum: URS (control group, untreated rice straw), TRS (urea-treated rice straw), FBS (faba bean straw), and TRS+FBS (mixture of TRS and FBS, 1:1). Nutrient digestibility and feeding values improved (P<0.05) with TRS+FBS lambs versus FBS, TRS and URS lambs. The highest numerical values of ruminal total volatile fatty acid (VFA) concentration in TRS lambs were recorded 23.9 ml.eq/dl followed by TRS+FBS, URS and FBS. Regarding to the ruminal parameters, there were no differences (P>0.05) among evaluated groups except for NH3-N, the highest concentration (P<0.05) was recorded in TRS lambs at 3 h post-feeding. Lambs of TRS, FBS and TRS+FBS showed faster growth (P<0.05) than those of the control (i.e., URS). Intakes of dry matter, total digestible nutrients, and digestible crude protein were numerically increased for TRS, FBS, and TRS+FBS. Feed conversion, as kg dry matter/kg gain, was improved for TRS, FBS, and TRS+FBS lambs versus URS. Daily gain of lambs increased (P<0.05) with lambs of TRS, FBS, and TRS+FBS but URS lambs showed a decrease (P<0.05) in daily gain. Feed conversion as kg dry matter intake/kg gain was improved (P<0.05) by feeding on TRS, FBS and TRS+FBS rations versus URS. The TRS+FBS lambs tended to have the highest economic efficiency versus URS, TRS and FBS lambs. It was concluded that urea-treated rice straw could be used as sole roughage or mixed with faba bean straw (1:1) in growing lambs' ration to improve their performance and economic efficiency without adversely affecting their health.The present study aimed to use poor quality roughages, such as rice and faba bean straw, treated with or without urea, and their impacts on digestibility, rumen fermentation, some blood parameters, and growth performance of lambs. Twenty crossbred male lambs (1/4 Finland ×¾ Ossimi, 25±1.13kg live body weight) were chosen and divided into four groups. All lambs were fed rations of concentrated feed mixture at 2% of live weight with the following roughages ad libitum: URS (control group, untreated rice straw), TRS (urea-treated rice straw), FBS (faba bean straw), and TRS+FBS (mixture of TRS and FBS, 1:1). Nutrient digestibility and feeding values improved (P<0.05) with TRS+FBS lambs versus FBS, TRS and URS lambs. The highest numerical values of ruminal total volatile fatty acid (VFA) concentration in TRS lambs were recorded 23.9 ml.eq/dl followed by TRS+FBS, URS and FBS. Regarding to the ruminal parameters, there were no differences (P>0.05) among evaluated groups except for NH3-N, the highest concentration (P<0.05) was recorded in TRS lambs at 3 h post-feeding. Lambs of TRS, FBS and TRS+FBS showed faster growth (P<0.05) than those of the control (i.e., URS). Intakes of dry matter, total digestible nutrients, and digestible crude protein were numerically increased for TRS, FBS, and TRS+FBS. Feed conversion, as kg dry matter/kg gain, was improved for TRS, FBS, and TRS+FBS lambs versus URS. Daily gain of lambs increased (P<0.05) with lambs of TRS, FBS, and TRS+FBS but URS lambs showed a decrease (P<0.05) in daily gain. Feed conversion as kg dry matter intake/kg gain was improved (P<0.05) by feeding on TRS, FBS and TRS+FBS rations versus URS. The TRS+FBS lambs tended to have the highest economic efficiency versus URS, TRS and FBS lambs. It was concluded that urea-treated rice straw could be used as sole roughage or mixed with faba bean straw (1:1) in growing lambs' ration to improve their performance and economic efficiency without adversely affecting their health.


Asunto(s)
Oryza , Vicia faba , Masculino , Ovinos , Animales , Oveja Doméstica , Nutrientes , Fibras de la Dieta , Urea , Ácidos Grasos Volátiles , Peso Corporal
8.
Water Environ Res ; 96(4): e11014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38636991

RESUMEN

In this study, the characteristics, anaerobic treatability, and energy potential of wastewater samples taken from a dairy products industry were investigated. It was determined that the wastewater has a high organic load (COD = 2800 mg O2/L) and a large proportion of this load is biodegradable. The biochemical methane potential (BMP) value of wastewater was measured as 1118.71 ± 122 ml CH4/L. Volatile solids (VS) removal of 67.25 ± 4.98% was achieved during batch tests and the obtained methane yield was calculated as 411.59 ± 22.8 ml CH4/g VS. Peak methane formation rate and lag time of microorganisms were determined as 163.42 ± 3.83 ml CH4/g VS d and 0.584 ± 0.023 d, respectively. Rate constant for the first-order kinetic model was 0.384 ± 0.072 d-1. The volatile fatty acid (VFA) yield was measured as 155.19 mg COD/g VSS. It was concluded that the wastewater can be treated anaerobically without any inhibition and it has great energy potential. PRACTITIONER POINTS: Dairy wastewater has a large organic load and that most of the organics can be easily biodegradable. Although there are many components considered to be toxic for anaerobic treatment in wastewater, they were found to be very under the inhibition thresholds and did not pose any risk of toxicity. At a satisfactory level, organic matter removal and methane formation were observed in batch anaerobic tests. A rapid microbial adaptation was achieved and the system reached equilibrium in a short time without any acid accumulation. The electrical and caloric energy potentials of the obtained methane gas were calculated as 2.12 and 4.25 kWh/m3, respectively.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Anaerobiosis , Ácidos Grasos Volátiles , Metano , Eliminación de Residuos Líquidos
9.
Food Microbiol ; 121: 104525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637087

RESUMEN

The lack of vitamin B12 in unprocessed plant-based foods can lead to health problems in strict vegetarians and vegans. The main aim of this study was to investigate the potential synergy of co-culturing Bifidobacterium animalis subsp. lactis and Propionibacterium freudenreichii in improving production of vitamin B12 and short-chain fatty acids in soy whey. Different strategies including mono-, sequential and simultaneous cultures were adopted. Growth, short-chain fatty acids and vitamin B12 were assessed throughout the fermentation while free amino acids, volatiles, and isoflavones were determined on the final day. P. freudenreichii monoculture grew well in soy whey, whereas B. lactis monoculture entered the death phase by day 4. Principal component analysis demonstrates that metabolic changes in both sequential cultures did not show drastic differences to those of P. freudenreichii monoculture. However, simultaneous culturing significantly improved vitamin B12, acetic acid and propionic acid contents (1.3 times, 5 times, 2.5 times, compared to the next highest treatment [sequential cultures]) in fermented soy whey relative to other culturing modes. Hence, co-culturing of P. freudenreichii and B. lactis would provide an alternative method to improve vitamin B12, acetic acid and propionic acid contents in fermented foods.


Asunto(s)
Bifidobacterium animalis , Propionibacterium freudenreichii , Propionatos , Propionibacterium freudenreichii/metabolismo , Bifidobacterium animalis/metabolismo , Suero Lácteo , Vitamina B 12/análisis , Vitamina B 12/metabolismo , Propionibacterium/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ácido Acético/metabolismo , Proteína de Suero de Leche/metabolismo , Vitaminas/metabolismo
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 236-243, 2024 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-38557374

RESUMEN

OBJECTIVES: To explore the changes in gut microbiota and levels of short-chain fatty acids (SCFA) in infants with cow's milk protein allergy (CMPA), and to clarify their role in CMPA. METHODS: A total of 25 infants diagnosed with CMPA at Children's Hospital Affiliated to Zhengzhou University from August 2019 to August 2020 were enrolled as the CMPA group, and 25 healthy infants were selected as the control group. Fecal samples (200 mg) were collected from both groups and subjected to 16S rDNA high-throughput sequencing technology and liquid chromatography-mass spectrometry to analyze the changes in gut microbial composition and metabolites. Microbial diversity was analyzed in conjunction with metabolites. RESULTS: Compared to the control group, the CMPA group showed altered gut microbial structure and significantly increased α-diversity (P<0.001). The abundance of Firmicutes, Clostridiales and Bacteroidetes was significantly decreased, while the abundance of Sphingomonadaceae, Clostridiaceae_1 and Mycoplasmataceae was significantly increased in the CMPA group compared to the control group (P<0.001). Metabolomic analysis revealed reduced levels of acetic acid, butyric acid, and isovaleric acid in the CMPA group compared to the control group, and the levels of the metabolites were positively correlated with the abundance of SCFA-producing bacteria such as Faecalibacterium and Roseburia (P<0.05). CONCLUSIONS: CMPA infants have alterations in gut microbial structure, increased microbial diversity, and decreased levels of SCFA, which may contribute to increased intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Lactante , Niño , Femenino , Animales , Bovinos , Humanos , Hipersensibilidad a la Leche/diagnóstico , Ácidos Grasos Volátiles , Bacterias/genética , Ácido Butírico , Proteínas de la Leche
11.
Sci Rep ; 14(1): 7774, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565877

RESUMEN

Human microbiota mainly resides on the skin and in the gut. Human gut microbiota can produce a variety of short chain fatty acids (SCFAs) that affect many physiological functions and most importantly modulate brain functions through the bidirectional gut-brain axis. Similarly, skin microorganisms also have identical metabolites of SCFAs reported to be involved in maintaining skin homeostasis. However, it remains unclear whether these SCFAs produced by skin bacteria can affect brain cognitive functions. In this study, we hypothesize that the brain's functional activities are associated with the skin bacterial population and examine the influence of local skin-bacterial growth on event-related potentials (ERPs) during an oddball task using EEG. Additionally, five machine learning (ML) methods were employed to discern the relationship between skin microbiota and cognitive functions. Twenty healthy subjects underwent three rounds of tests under different conditions-alcohol, glycerol, and water. Statistical tests confirmed a significant increase in bacterial population under water and glycerol conditions when compared to the alcohol condition. The metabolites of bacteria can turn phenol red from red-orange to yellow, confirming an increase in acidity. P3 amplitudes were significantly enhanced in response to only oddball stimulus at four channels (Fz, FCz, and Cz) and were observed after the removal of bacteria when compared with that under the water and glycerol manipulations. By using machine learning methods, we demonstrated that EEG features could be separated with a good accuracy (> 88%) after experimental manipulations. Our results suggest a relationship between skin microbiota and brain functions. We hope our findings motivate further study into the underlying mechanism. Ultimately, an understanding of the relationship between skin microbiota and brain functions can contribute to the treatment and intervention of diseases that link with this pathway.


Asunto(s)
Glicerol , Microbiota , Humanos , Encéfalo/metabolismo , Ácidos Grasos Volátiles/metabolismo , Cognición , Electroencefalografía , Agua
12.
Microb Cell Fact ; 23(1): 101, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566056

RESUMEN

BACKGROUND: Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS: In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS: A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.


Asunto(s)
Yarrowia , Fermentación , Yarrowia/metabolismo , Caproatos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos/metabolismo , Ácidos/metabolismo , Perfilación de la Expresión Génica , Carbono/metabolismo
13.
Environ Microbiol ; 26(4): e16626, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646847

RESUMEN

The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.


Asunto(s)
Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Animales , Abejas/microbiología , Ácidos Grasos Volátiles/metabolismo , Genoma Bacteriano , Microbiología de Alimentos , Metagenómica , Vitaminas/metabolismo , Filogenia
14.
Neuromolecular Med ; 26(1): 14, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630350

RESUMEN

Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple , Humanos , Sistema Nervioso Central , Colon , Ácidos Grasos Volátiles , Inflamación
15.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613022

RESUMEN

A low-fibre diet leads to gut microbiota imbalance, characterized by low diversity and reduced ability to produce beneficial metabolites, such as short-chain fatty acids (SCFAs). This imbalance is associated with poor gastrointestinal and metabolic health. We aimed to determine whether one dietary change, substitution of white bread with high-fibre bread, improves gut microbiota diversity and SCFA-producing capability. Twenty-two healthy adults completed a two-phase randomized, cross-over trial. The participants consumed three slices of a high-fibre bread (Prebiotic Cape Seed Loaf with BARLEYmax®) or control white bread as part of their usual diet for 2 weeks, with the treatment periods separated by a 4-week washout. High-fibre bread consumption increased total dietary fibre intake to 40 g/d, which was double the amount of fibre consumed at baseline or during the white bread intervention. Compared to white bread, the high-fibre bread intervention resulted in higher faecal alpha diversity (Shannon, p = 0.014) and relative abundance of the Lachnospiracae ND3007 group (p < 0.001, FDR = 0.019) and tended to increase the butyrate-producing capability (p = 0.062). In conclusion, substituting white bread with a high-fibre bread improved the diversity of gut microbiota and specific microbes involved in SCFA production and may enhance the butyrate-producing capability of gut microbiota in healthy adults. These findings suggest that a single dietary change involving high-fibre bread provides a practical way for adults to exceed recommended dietary fibre intake levels that improve gut microbiota composition and support gastrointestinal and metabolic health.


Asunto(s)
Pan , Microbiota , Adulto , Humanos , Ácidos Grasos Volátiles , Butiratos , Bacterias , Prebióticos
16.
Front Immunol ; 15: 1385907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605960

RESUMEN

The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Mucosa Intestinal , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Ácidos Grasos Volátiles/metabolismo , Hipoxia/metabolismo
17.
Front Immunol ; 15: 1380476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605957

RESUMEN

Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.


Asunto(s)
Diabetes Mellitus Tipo 2 , Epigénesis Genética , Humanos , Disbiosis , Obesidad/genética , Inflamación , Ácidos Grasos Volátiles/metabolismo
18.
PLoS One ; 19(4): e0301532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626052

RESUMEN

Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.


Asunto(s)
Diabetes Mellitus Experimental , Entrenamiento de Intervalos de Alta Intensidad , Síndrome Metabólico , Microbiota , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Propionatos/farmacología , Interleucina-6/farmacología , Receptor Toll-Like 4 , Ácidos Grasos Volátiles/metabolismo , Butiratos/farmacología , Entrenamiento de Intervalos de Alta Intensidad/métodos
19.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581382

RESUMEN

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Asunto(s)
Encefalitis Japonesa , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Enfermedades Neuroinflamatorias , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/microbiología , Microglía/efectos de los fármacos , Microglía/inmunología , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/microbiología , Encefalitis Japonesa/prevención & control , Encefalitis Japonesa/virología , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Virus de la Encefalitis Japonesa (Subgrupo)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Subgrupo)/inmunología , Virus de la Encefalitis Japonesa (Subgrupo)/patogenicidad , Análisis de Supervivencia , Quimiocinas/inmunología , Quimiocinas/metabolismo , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/metabolismo , Síndrome de Liberación de Citoquinas/prevención & control , Humanos , Femenino , Animales , Ratones , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/virología , Carga Viral/efectos de los fármacos , Factores de Tiempo
20.
J Hazard Mater ; 470: 134195, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581872

RESUMEN

This study leveraged synthesis gas (syngas), a renewable resource attainable through the gasification of biowaste, to achieve efficient chromate removal from water. To enhance syngas transfer efficiency, a membrane biofilm reactor (MBfR) was employed. Long-term reactor operation showed a stable and high-level chromate removal efficiency > 95%, yielding harmless Cr(III) precipitates, as visualised by scanning electron microscopy and energy dispersive X-ray analysis. Corresponding to the short hydraulic retention time of 0.25 days, a high chromate removal rate of 80 µmol/L/d was attained. In addition to chromate reduction, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms, showing that biological chromate reduction was primarily driven by VFAs produced from in situ syngas fermentation, whereas hydrogen originally present in the syngas played a minor role. 16 S rRNA gene amplicon sequencing has confirmed the enrichment of syngas-fermenting bacteria (such as Sporomusa), who performed in situ gas fermentation leading to the synthesis of VFAs, and organics-utilising bacteria (such as Aquitalea), who utilised VFAs to drive chromate reduction. These findings, combined with batch assays, elucidate the pathways orchestrating synergistic interactions between fermentative microbial cohorts and chromate-reducing microorganisms. The findings facilitate the development of cost-effective strategies for groundwater and drinking water remediation and present an alternative application scenario for syngas.


Asunto(s)
Biopelículas , Reactores Biológicos , Cromatos , Membranas Artificiales , Cromatos/metabolismo , Fermentación , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción , Ácidos Grasos Volátiles/metabolismo , Bacterias/metabolismo , Bacterias/genética , Hidrógeno/metabolismo , Gases/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...